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Coinfecting parasites and pathogens remain a leading challenge
for global public health due to their consequences for individual-
level infection risk and disease progression. However, a clear
understanding of the population-level consequences of coin-
fection is lacking. Here, we constructed a model that includes
three individual-level effects of coinfection: mortality, fecundity,
and transmission. We used the model to investigate how these
individual-level consequences of coinfection scale up to produce
population-level infection patterns. To parameterize this model,
we conducted a 4-y cohort study in African buffalo to esti-
mate the individual-level effects of coinfection with two bacterial
pathogens, bovine tuberculosis (bTB) and brucellosis, across a
range of demographic and environmental contexts. At the indi-
vidual level, our empirical results identified bTB as a risk factor
for acquiring brucellosis, but we found no association between
brucellosis and the risk of acquiring bTB. Both infections were
associated with reductions in survival and neither infection was
associated with reductions in fecundity. The model reproduced
coinfection patterns in the data and predicted opposite impacts
of coinfection at individual and population scales: Whereas bTB
facilitated brucellosis infection at the individual level, our model
predicted the presence of brucellosis to have a strong negative
impact on bTB at the population level. In modeled populations
where brucellosis was present, the endemic prevalence and basic
reproduction number (R0) of bTB were lower than in populations
without brucellosis. Therefore, these results provide a data-driven
example of competition between coinfecting pathogens that
occurs when one pathogen facilitates secondary infections at the
individual level.

African buffalo | brucellosis | tuberculosis | coinfection | competition

Over one-sixth of the global human population is estimated to
be affected by coinfection [concurrent infection by multiple

pathogens (1)]. Their ubiquity includes over 270 pathogen taxa
and many important chronic infections, such as hepatitis-C, HIV,
TB, and schistosomiasis (1–3). Mounting evidence suggests that
coinfecting pathogens can interact within the host to influence
the individual-level clinical outcomes of infection (4, 5). These
interactions may also influence the spread of infections at the
population level (6, 7). Understanding the effects of coinfection
at both levels may, therefore, be fundamental to the success of
integrated treatment and control programs that target multiple
infections (8, 9).

One challenge to predicting the epidemiological conse-
quences of coinfection is that the mechanisms of parasite
interaction—and their resulting changes to susceptibility or dis-
ease progression—occur within the host, while patterns relevant
for disease control occur within a population (10). Bridging these
individual and population scales requires synthesizing multiple,
individual-level processes across natural demographic and envi-
ronmental variation. For example, in an ecosystem with more
than one pathogen, infection with one pathogen may be one of

the best predictors of individual-level risk for infection with a
second pathogen (11, 12), resulting in increased or decreased
transmission. Coinfecting pathogens may also moderate the
individual-level survival and fecundity costs of infection (4, 13).
However, the population-level consequences of coinfection are
influenced by the net effects of these potentially nonlinear
individual-level processes (14, 15).

At the population level, theoretical studies have highlighted
the range of dynamics generated by coinfecting pathogens (6,
16, 17). Even for unrelated pathogens, coinfection can dramat-
ically modify infection dynamics through ecological mechanisms
such as convalescence and disease-induced mortality (15, 18–21).
This theoretical work builds on a detailed database of child-
hood infections, thereby providing a data-driven understanding
of coinfection dynamics for acute, immunizing infections. In
contrast, data and theory on the effects of coinfection with
long-lasting infections are limited (but see ref. 22). Chronic
coinfections are of particular interest in this context because
they are responsible for the majority of coinfections (1) and
have the potential to dramatically alter infection patterns (14).
Their protracted presence in the host brings increased complex-
ity to pathogen interactions, challenging model development and
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evaluation. Detailed longitudinal sampling or experimental stud-
ies are required to unravel their precise mechanisms and poten-
tially asymmetric outcomes of interaction (22). Few datasets
simultaneously estimate the individual-level transmission, sur-
vival, and fecundity consequences of coinfection. To address
this gap, we provide a data-driven investigation of coinfection
dynamics for chronic pathogens.

We focus our research on two chronic bacterial infections,
bovine tuberculosis (bTB) and brucellosis, in a wild popula-
tion of African buffalo (Syncerus caffer) to ask: How do the
individual-level consequences of coinfection scale up to pro-
duce population-level infection patterns? This system allows us
to simultaneously monitor both individual and population lev-
els of the infection process (4, 7) in a natural reservoir host (23,
24). Furthermore, bTB and brucellosis have well-characterized
and asymmetric effects on the within-host environment. bTB is
a directly transmitted, life-long respiratory infection that causes
dramatic and systemic changes to host immunity (25). African
buffalo infected with bTB have reduced innate immune function
and increased inflammatory responses (4). Conversely, brucel-
losis is a persistent infection of the reproductive system. It
persists within phagocytic cells (26), and although infection also
invokes an inflammatory response, it is less severe and more
localized compared to the immune response to bTB (27). These
differences and our ability to observe the natural history of both
infections make bTB and brucellosis an ideal system to explore
disease dynamics across scales.

Our approach combines a mathematical model of the coinfec-
tion dynamics of bTB and brucellosis and a 4-y cohort study of
151 buffalo (Fig. 1). For this model, all parameters describing the
consequence of coinfection were estimated from field data; they
include the individual-level, per capita consequences of coinfec-
tion on mortality, fecundity, and infection risk. We quantified
these parameters by tracking the individual infection profiles of
each buffalo, which were monitored at approximately 6-mo inter-
vals and resulted in over 4,386 animal months of observation time
from two capture sites. We show that the model accurately repro-
duces observed coinfection patterns and use the model to predict
the reciprocal effects of brucellosis and bTB on each other’s

dynamics at the population level. In addition, we assess the rel-
ative importance of each individual-level process on coinfection
dynamics.

Results
Individual-Level Consequences of Coinfection: Model Parameteriza-
tion. bTB and brucellosis were associated with multiplicative
increases in mortality (Fig. 2A and SI Appendix, section 1, Table
S1). Approximate annual mortality rates in the data were 0.056
(10 mortalities/175.75 animal years) in uninfected buffalo, 0.108
(6 mortalities/55.5 animal years) in buffalo with bTB alone,
0.144 in buffalo with brucellosis alone (13 mortalities/90.5 ani-
mal years), and 0.21 in coinfected buffalo (9 mortalities/43.8
animal years). After accounting for environmental and demo-
graphic covariates with a Cox proportional hazards regression
model, bTB was associated with a 2.82 (95% CI 1.43–5.58)-
fold increase in mortality, and infection with brucellosis was
associated with a 3.02 (95% CI 1.52–6.01)-fold increase in mor-
tality compared with uninfected buffalo. Coinfected buffalo were
associated with an 8.58 (95% CI 3.20–22.71)-fold increase in
mortality compared with uninfected buffalo (Fig. 2A). Mortal-
ity rates were also influenced by buffalo age and capture site, but
the effect of coinfection remained consistent across all ages and
in both sites. Neither infection was associated with reductions in
fecundity (described in detail in SI Appendix, section 1, Fig. S1).
Uninfected buffalo were observed with a calf 68% (11/16) of the
time compared with 37% (6/16), 29% (7/24), and 57% (4/7) in
bTB-positive, brucellosis-positive, and coinfected adult buffalo.

The consequences of coinfection on infection risk were
asymmetric, with bTB facilitating brucellosis infection but not
vice versa (Fig. 2B and SI Appendix, section 1, Table S2).
Approximate brucellosis incidence rates were 0.05 (18 infec-
tions/340 animal years) in uninfected buffalo compared with
0.08 (8 infections/104 animal years) in buffalo with bTB (SI
Appendix, section 1, Fig. S2). Approximate bTB incidence rates
were 0.08 (27 infection/340 animal years) in uninfected buffalo
and 0.07 (9 infections/138 animal years) in buffalo with bru-
cellosis. After accounting for demographic covariates in a Cox
proportional hazards regression model, brucellosis infection risk

Fig. 1. Conceptual diagram of the data, model, and evaluation. (Center) A schematic representation of the disease model defined in SI Appendix, section
2. Hosts are represented as susceptible (S), infected with bTB only (IT ), infected with brucellosis only (IB), coinfected with both infections (IC ), persistently
infected with brucellosis only but no longer infectious (RB), and persistently infected with brucellosis but no longer infectious and coinfected with bTB (RC ).
(Left) A detailed cohort study informs model parameterization by quantifying the mortality, transmission, and fecundity consequences of coinfection (Right)
as well as the transmission parameters for both infections. (Right) The prevalence plot illustrates that the model accurately reproduces coinfection patterns
in the data. The bars represent the proportion of single (S) and coinfected (C) individuals in the model results and the solid circles represent the data.
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Fig. 2. Parameter estimation based on Cox proportional hazards analyses
of the cohort study. (A) The predicted median and SE for the proportional
change in mortality when buffalo are infected with brucellosis or bTB or
coinfected relative to uninfected buffalo. (B) The predicted estimates for
the proportional change in infection risk when buffalo are infected with
another pathogen relative to the risk in uninfected buffalo. The dashed line
indicates no change in risk.

was 2.09 (95% CI 0.89–4.91) times higher in buffalo with bTB
compared with susceptible buffalo. bTB infection risk was similar
in uninfected buffalo and buffalo with brucellosis. The associa-
tion between prior infection with bTB and brucellosis infection
risk varied by capture site, with the association between bTB and
brucellosis infection risk ranging from no change at one site to a
4.32 (95% CI 1.51–12.37)-fold higher risk at the other site (inter-
action term for bTB × site: P value = 0.045 and SI Appendix,
section 1, Table S2). The regression model also identified an
association between brucellosis infection risk and buffalo age.
Early reproductive-aged buffalo had an increased infection risk.

Population-Level Consequences of Coinfection: Basic Reproduction
Number and Prevalence. We built a disease dynamic model to
translate the individual-level effects quantified above into pre-
dicted population-level effects of coinfection (Fig. 1 and SI
Appendix, section 2). Our disease model parameterization, there-
fore, represents increased risk of acquiring brucellosis in early
reproductive-aged buffalo and the average effect of bTB on bru-
cellosis infection risk across sites. For example, to represent
increased brucellosis infection risk in buffalo with bTB, we spec-
ify a higher transmission rate for buffalo with bTB compared
with the transmission rate for uninfected buffalo. SI Appendix,
section 2, Tables S3 and S4 provides additional detail on model
parameterization and defines how the consequences of coinfec-
tion quantified in our data analyses were translated into model
parameters.

We estimated parameter values for the transmission rate of
bTB and brucellosis by minimizing the sum of squared errors
between the overall bTB and brucellosis infection prevalence in
our data and in an age-matched sample from the model after
it had reached equilibrium (SI Appendix, section 2, Fig. S4).
bTB prevalence in the data was 27% and brucellosis prevalence
was 34%. The resulting transmission rate parameters (brucel-
losis transmission rate in uninfected buffalo, 0.576; brucellosis
transmission rate in buffalo with bTB, 1.20; bTB transmission
rate in uninfected buffalo and in buffalo with brucellosis, 0.0013;
SI Appendix, section 2, Table S4) accurately predict the positive
association between bTB and brucellosis observed in the data
(Fig. 1, Right, Inset bar plot) and allow us to predict the preva-
lence and basic reproduction number in modeled populations
with and without coinfection. The basic reproduction number,
Ri

0 (i = T, B for infection with bTB or brucellosis) is defined
as the average number of secondary cases generated by a single
infection in a susceptible population.

In modeled populations, the presence of brucellosis infection
results in large reductions in RT

0 , with a predicted RT
0 = 3.4

in populations where brucellosis is absent and RT
0 = 1.5 in

populations where brucellosis is present. The predicted bTB
prevalence is also lower in populations where both pathogens
occur, with a bTB prevalence of 65.8% in populations where
brucellosis is absent compared with 27.9% when both pathogens
co-occur. Conversely, the presence or absence of bTB has only
minor effects on the RB

0 and brucellosis prevalence. To represent
uncertainty in the individual-level consequences of coinfection,
we used Monte Carlo sampling of the parameters quantified in
our statistical analyses (Fig. 2 and SI Appendix, section 2, Table
S5). Fig. 3 displays the effect of coinfection when uncertainty
in input parameters is considered. In this range of parameter
values (parameter space), 96% of model trajectories predict a
lower bTB prevalence in populations with brucellosis than in
populations without brucellosis. In the remaining 4%, brucellosis
did not persist in populations with or without coinfection due
to high mortality rates and low facilitation rates (SI Appendix,
section 2, Fig. S5).

To generalize these results, we compared infection preva-
lence in modeled populations with and without coinfection over
a range of parameter values. We manipulated the infection

Fig. 3. Model predictions of the reciprocal consequences of coinfection
in populations where one or both pathogens occur. Purple represents the
model predictions of (A and B) R0 and (C and D) prevalence for bTB; green
represents predictions of R0 and prevalence for brucellosis. For example, the
purple circles and lines represent the median and SE prediction for bTB in
populations where only bTB occurs. The purple triangles represent the pre-
diction for bTB in populations where both pathogens are present. We used
Monte Carlo sampling to quantify the uncertainty in model outcomes due to
uncertainty in the parameters describing the individual-level consequences
of coinfection (Fig. 2 and SI Appendix, section 2). (A) The estimated R0 for
bTB was lower in populations where brucellosis co-occurs while the esti-
mated R0 for brucellosis was similar in populations with and without bTB.
(B) Histograms showing the difference in R0 in populations where one or
both pathogens are present. For each parameter set, change is calculated
as the predicted value of bTB prevalence (purple) or brucellosis prevalence
(green) in populations with coinfection subtracted by the predicted value
in populations with a single pathogen. (C) The estimated prevalence of bTB
was lower in populations where brucellosis co-occurs, while the estimated
prevalence of brucellosis was similar in populations with and without bTB.
(D) Histograms showing the difference in prevalence in populations where
one or both pathogens are present.
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risk (e.g., transmission rate) and mortality consequences of
coinfection to explore other environmental contexts where the
individual-level effects of coinfection may be reduced or exacer-
bated (Fig. 4). For two pathogens, A and B, the results suggest
that pathogen A will have a negative effect on the prevalence of
pathogen B if coinfected individuals have elevated mortality and
infection with pathogen A results in reduced or similar suscep-
tibility to pathogen B. In contrast, pathogen A is predicted to
have a positive effect on the prevalence of pathogen B if infec-
tion results in an increased transmission rate for pathogen B and
minimal changes in mortality with coinfection. When coinfection
is associated with changes in both the transmission and mortality
rates, the population-level consequences of coinfection depend
on the type of pathogen considered. Specifically, bTB preva-
lence is lower in modeled populations with brucellosis for most
parameter values while the effect of bTB on brucellosis is more
variable.

At the parameter values quantified in our empirical dataset,
these results illustrate that the lower bTB prevalence in popula-
tions where brucellosis co-occurs is driven by two mechanisms:
(i) bTB is associated with increases in the transmission rate of
brucellosis but not vice versa and (ii) coinfection is associated
with increased mortality. As a result, at the individual level,
buffalo infected with bTB are more likely to become infected
with brucellosis and die than their uninfected counterparts. The
resulting reductions in infection duration mean that the pres-
ence of brucellosis is predicted to reduce bTB prevalence at the
population level. These results are robust to several important
changes in the model structure, including alternative forms of
density dependence, a range of values for the model param-
eters (SI Appendix, section 2, Figs. S6–S8), and density- vs.
frequency-dependent transmission terms. Model dynamics in all
formulations are qualitatively similar, although there is some
variation in overall magnitude of change with coinfection.

Discussion
Our study provides a mechanistic understanding of how chronic
coinfections mediate each other’s dynamics. Model dynamics
show that a pathogen can increase or decrease the preva-
lence of a second pathogen, depending on the net effect of
infection on the transmission rate and infection duration of

Fig. 4. The difference between predicted (Left) bTB or (Right) brucellosis
prevalence values in populations where one or both pathogens are present.
The axes represent a range of transmission rate and mortality consequences
of coinfection. Proportional increases in mortality represent the mortality
rate in coinfected individuals divided by the rate in susceptible individuals.
Proportional increases in the transmission rate represent the transmission
rate of the focal pathogen in individuals infected with the second pathogen
divided by the transmission rate of the focal pathogen for susceptible indi-
viduals. Red indicates that the prevalence of the focal pathogen is higher
in populations where the second pathogen is present; blue indicates that
the prevalence of the focal pathogen is lower in populations where the sec-
ond pathogen is present; yellow indicates no change. Contour lines indicate
changes in prevalence by 20%. Circles and error bars indicate median and
SE parameter values estimated in the data.

the second pathogen, the latter via mortality. When infection
with one pathogen modifies only the transmission or only the
mortality rate of the second pathogen, the prevalence of the
second pathogen predictively increases or decreases (Fig. 4
and SI Appendix, section 2, Figs. S7 and S8). Previous work
has quantified the disease-dynamic consequences of changes in
transmission through a range of mechanisms: cross-immunity,
antibody-mediated enhancement, immunosuppression, and con-
valescence (16, 20, 28, 29). Here, we show that transmission
and mortality should be considered concurrently, following the-
oretical predictions (14, 22, 30). When pathogens modify both
processes, nonlinear responses mediated through the coinfect-
ing pathogen can have a large impact on population-level disease
dynamics.

By exploring the coinfection dynamics of bTB and brucellosis,
we also provide a data-driven example of competition between
pathogens in a natural population. Here, the mechanism driv-
ing competition is different from previously described examples
that focus on cross-immunity (29), resource competition within
the host (31, 32), or ecological competition by convalescence
(20, 21). The mechanism of parasite interaction in these exam-
ples occurs when one infection reduces the transmission of the
second pathogen. By contrast, in our study system, we did not
see a reduced transmission rate for bTB or brucellosis during
coinfection. Individuals infected with bTB were associated with a
higher rate of acquiring brucellosis in at least one of our sites but
appeared to have no effect in the other site. Brucellosis appeared
to have no effect on the transmission of bTB (Fig. 2). Because
coinfection was associated with elevated mortality, coinfected
individuals were also removed from the population at a faster
rate. Competition, therefore, occurs at the population level: bTB
is predicted to have a lower prevalence and lower RT

0 in pop-
ulations where brucellosis occurs compared with populations
without brucellosis.

The model structure in this study is informed by our empirical
data. As a result, it incorporates realistic age-specific transmis-
sion and mortality rates as well as data-driven estimates of the
consequences of coinfection. However, additional detail could
be added to our model. Specifically, we do not know the con-
sequences of either infection on the other’s infection duration
or infectiousness, two processes likely to influence persistent
infections (18, 22). We also do not consider genetic variation
within our buffalo population that may mediate susceptibility to
either pathogen. However, our model’s ability to accurately rep-
resent coinfection patterns with the mechanisms characterized
suggests that we have captured the most important processes.
Furthermore, our empirical results account for natural variation
in demographic and environmental conditions. Thus, our results
highlight the importance of coinfection in generating population-
level association patterns relative to environmental or genetic
drivers of infection.

Given the ubiquity and documented individual-level impacts
of chronic coinfections on the host, these results highlight two
core challenges in the design and application of integrated con-
trol strategies. First, it remains unclear how commonly competi-
tion between coinfecting pathogens is occurring. Understanding
which pathogens may be competing in coinfected host popula-
tions is crucial to estimating the costs and benefits of disease
control interventions. For example, in the presence of pathogen
competition, removing one pathogen may unintentionally lead
to a resurgence of or increases in prevalence of a competing
pathogen. Our results suggest that competition at the population
level can occur between unrelated pathogens and in the absence
of competition for shared resources within the host. Competition
appears to be strongest when pathogens have asymmetric effects
on transmission. Similar asymmetries in transmission occur in
HIV–malaria (6) and HIV–HCV coinfections (33), suggesting a
role for this mechanism in other systems.
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Second, knowledge on which chronic pathogens are most likely
to be influenced by a second infection remains largely theoreti-
cal [excluding notable progress with HIV coinfections (6, 22)].
In this study, the immunosuppressive pathogen, bTB (4, 34), was
strongly influenced by coinfection at the population level, and
our analyses show that bTB prevalence should typically decline
in the presence of another chronic pathogen, provided that coin-
fected hosts suffer greater mortality. This raises the question of
whether there are traits of chronic pathogens (e.g., immunosup-
pressive effects) that make them more likely to be influenced by
the presence of other infections. Studies addressing these ques-
tions are urgently needed to target both research and treatment
on the pathogens most likely to be influenced by coinfection.

Materials and Methods
Model Development. We developed an age-structured, continuous-time
disease-dynamic model to explore the consequences of coinfection on bTB
and brucellosis infection (Fig. 1). Animals were classified in six groups:
susceptible to both infections (S), infected with bTB only (IT ), infected
with brucellosis only (IB), coinfected with both pathogens (IC ), persistently
infected with brucellosis but no longer infectious (RB), or persistently
infected with brucellosis but no longer infectious and coinfected with
bTB (RC ). We modeled bTB as a lifelong infection with density-dependent
transmission (35). Both singly infected (IT ) and coinfected (IC , RC ) buffalo
contribute to bTB transmission. Transmission of brucellosis was assumed to
be frequency dependent following modeling work in American bison sup-
porting this assumption (36, 37). Across host species, transmission occurs
through ingestion of the bacteria shed in association with aborted fetuses,
reproductive tissues, or discharges during birthing [cattle (38), elk (39), and
bison (40)]. Singly infected (IB) and coinfected (IC ) buffalo contribute to bru-
cellosis transmission. Persistently infected buffalo (RB, RC ) do not contribute
to brucellosis transmission, but they do test positive for brucellosis infection.
We did not consider vertical transmission because serological evidence sug-
gests that it is rare in African buffalo (41) and experimental evidence for
vertical transmission varies by host species [e.g., elk (39)]. Buffalo popula-
tions experience density-dependent recruitment, which we modeled with
a generalized Beverton–Holt equation (42). This two-parameter represen-
tation of density dependence gives a stable age structure and relatively
constant population size (ref. 43 and SI Appendix, section 2, Fig. S3). A full
description of the model is provided in SI Appendix, section 2.

The individual-level consequences of coinfection can be summarized by
four individual-level processes: (i) the effects of prior infection with bru-
cellosis on the rate individuals acquire bTB infection, (ii) the effects of
prior infection with bTB on the rate individuals acquire brucellosis infec-
tion, (iii) the effects of coinfection on the per capita mortality rate, and (iv)
the effects of coinfection on the per capita birth rate. To investigate the
consequences of these four individual-level processes on disease dynam-
ics, we quantified the median values of these rates in susceptible, singly
infected, and coinfected buffalo. Transmission rates, mortality rates, and the
proportional reductions in fecundity with infection are allowed to be age
dependent, but recovery and recrudescence are assumed to be independent
of age.

Individual-Level Data and Parameter Estimation. We conducted a longitudi-
nal study of 151 female buffalo to estimate the consequences of bTB and
brucellosis infection. Buffalo were captured at two locations in the south-
eastern section of Kruger National Park, radio collared for reidentification,

and recaptured biannually at∼6-mo intervals until June–October 2012. Dur-
ing each capture, we recorded brucellosis infection status, bTB infection
status, age, and the animals’ reproductive status. Brucellosis testing was con-
ducted with an ELISA antibody test and bTB testing was conducted with a
gamma-IFN assay (44, 45). Detailed methodological descriptions of our cap-
ture and disease testing protocols are provided in SI Appendix, section 3.
Animal protocols for this study were approved by the University of Georgia
(UGA) and Oregon State University (OSU) Institutional Animal Care and Use
Committees (UGA AUP A2010 10-190-Y3-A5 and OSU AUP 3822 and 4325).

We assessed the effects of coinfection on median mortality rates and
the median rate at which animals acquired infection by analyzing our lon-
gitudinal time-to-event data using semiparametric Cox models where an
individual’s covariates representing infection change over time. Specifically,
we fitted three regression models to predict three events: the time to mor-
tality in uninfected, bTB+, brucellosis+, and coinfected individuals; the time
to infection with brucellosis in buffalo with and without bTB; and the time
to infection with bTB in buffalo with and without brucellosis. In all analyses,
we included age and initial capture site as time-independent, categorical
variables and infection status as a time-dependent explanatory variable. We
also evaluated whether the association between brucellosis and bTB var-
ied by age or site by including interactions terms between bTB and each
environmental variable.

Model Evaluation and Inference. Parameter values for the transmission rate
of bTB and brucellosis were estimated by fitting the model to the overall
prevalence estimate for bTB and brucellosis in the study population. Our
data do not represent a random sample because buffalo aged over the
course of the study, with a median age of 3.4 y in buffalo initially captured
in June–October 2008. We therefore calculated the overall prevalence for
each pathogen after randomly sampling one time point for each buffalo.
We estimated the overall prevalence in the study population as the median
prevalence in 1,000 replicate samples. We use the prevalence calculated for
all buffalo in this study regardless of their initial capture location because
prevalence was similar at both locations, herds move and mix within and
between sites, and site-specific parameters did not change the qualitative
conclusion of this work (SI Appendix, section 2, Fig. S9). Model estimates
of prevalence were calculated numerically using the deSolve package (46).
We calculated prevalence in the model after it had reached equilibrium
by representing bTB prevalence as πT = (IT + IC + RC )/(S + IT + IC + RC +

IB + RB) and brucellosis prevalence as πB = (IB + RB + IC + RC )/(S + IT + IC +

RC + IB + RB). The transmission rates of both pathogens were estimated by
numerically minimizing the sum of squared differences between the preva-
lence estimates for bTB and brucellosis in the data and in age-matched
estimates of prevalence from the model. We used the Nelder–Mead algo-
rithm implemented with the optim function in R to minimize this function.
We evaluated our model by comparing its ability to recreate coinfection pat-
terns in the data, as only the overall prevalence of both pathogens was used
for fitting (Fig. 1). We calculated R0 numerically using the next-generation
method (47).
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