MICROSATELLITE LETTERS

Development and characterization of 30 novel microsatellite markers for Grant's gazelle (*Nanger granti*)

Katherine E. L. Worsley-Tonks · Stacey L. Lance · Rochelle R. Beasley · Kenneth L. Jones · Vanessa O. Ezenwa

Received: 4 September 2014/Accepted: 19 September 2014/Published online: 24 September 2014 © Springer Science+Business Media Dordrecht 2014

Abstract We isolated and characterized a set of 30 novel microsatellite loci for Grant's gazelle (*Nanger granti*). Loci were screened in 24 individuals from a population in Laikipia County, Kenya. The mean number of alleles per locus was 3.73 (range 1–10), and observed heterozygosity ranged from 0.00 to 0.870 (mean 0.404). The Grant's gazelle is currently listed as a species of least concern by the IUCN, but declining numbers across a large part of its range are a cause for concern. These new loci will facilitate basic behavioral, ecological, and population genetic studies of a species facing declining populations.

Keywords Nanger granti · Grant's gazelle · Illumina · Microsatellite · PCR primers

Grant's gazelles (*Nanger granti*) are distributed across East Africa from Ethiopia and South Sudan, across Kenya and

Electronic supplementary material The online version of this article (doi:10.1007/s12686-014-0339-9) contains supplementary material, which is available to authorized users.

K. E. L. Worsley-Tonks · V. O. Ezenwa (⊠) Odum School of Ecology, University of Georgia, Athens, GA 30602, USA e-mail: vezenwa@uga.edu

S. L. Lance · R. R. Beasley Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA

K. L. Jones

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA

V. O. Ezenwa

Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA into Uganda and central Tanzania. Although general features of Grant's gazelle ecology and social organization have been described, key characteristics of the species' biology remain unknown. In the face of downward trends in Grant's gazelle population numbers (IUCN 2008), insights drawn from microsatellite-based studies can contribute to a deeper understanding of gazelle behavior, ecology, and conservation.

We collected blood and ear punch samples from Grant's gazelles at the Mpala Research Centre, Laikipia, Kenya (0°17'N, 37°52'E) in 2009 and 2011. Blood samples were frozen at -20 °C and tissue samples were kept in 95 % EtOH until DNA extraction. DNA extractions were performed using DNeasy blood and tissue kits (Qiagen) according the manufacturer's instructions. Total DNA extracted from the tissue of a single individual was used for isolation and identification of microsatellite loci. An Illumina paired-end shotgun library was prepared by following the standard protocol of the Illumina Nextera DNA Sample Preparation kit and using a dual index identifier adaptor. This library was pooled with those from other species and Illumina sequencing was conducted on the HiSeq with 100 bp paired-end reads. Five million of the resulting reads were analyzed with the program PAL_FINDER_v0.02.03 (Castoe et al. 2012) to extract those reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites. Once positive reads were identified they were batched to a local installation of the program Primer3 (version 2.0.0) for primer design. We tested forty-eight primer pairs for amplification and polymorphism following the methods detailed in O'Bryhim et al. (2013), and assessed the variability of 30 loci in 24 individuals (12 from 2009 and 12 from 2011). Conditions and characteristics of the loci are provided in Table 1. Tests for deviations from Hardy-Weinberg equilibrium (HWE) for linkage and

Locus	Primer Sequence $5' -> 3'$	Repeat motif	Size (bp)	N	K	Ho	H _e	PI	TD
Nagr2	F: *AGATTTCTGGAACTCTCTTGCC	TGC	240-264	24	3	0.125	0.119	0.78	TD 65
	R: AAATTGGCAACATCCACTGC								
Nagr5	F: *TTTAGCTTGAATTAAACCTGCTGC	AAAG	169–181	24	3	0.458	0.500	0.3	TD 65
	R: AATCCCATGAACGGAGATGC								
Nagr6	F: *GCAAATTCTTTACCGCTGGC	TGC	234-243	24	2	0.458	0.478	0.39	TD 65
	R: AATTTGACGGGCAAACAACC								
Nagr8	F: *TTTCTTTCAGTTCATTCATAGGGC	TGC	139–160	24	4	0.375	0.647	0.19	TD 65
	R: ACCTGGTGAGCTGCTATGGG								
Nagr12	F: *TCTTGTTTCTGTGCTTACATTGG	TGC	285-351	23	9	0.782	0.827	0.52	TD 65
	R: AGCTCTTCTGCTTTCCAGCC								
Nagr13	F: *AGTCGCATAGGGTCGGACG	TGC	248-266	24	3	0.292	0.254	0.58	TD 65
	R: ATTCTGGGTTCTGGAGACGC								
Nagr17	F: *CCACAGGACTATCCCATAAGGC	ATGG	208-212	23	2	0.217	0.364	0.47	TD 65
	R: CATTCACCTACTCAACCCACCC								
Nagr18†	F: *AAATTAGAATTTCTGTAGCTATGGCG	ATCT	245-265	24	5	0.375	0.753	0.10	TD 65
	R: CCCTCTATGATGAGGCACTCC								
Nagr20	F: *CTTCGAAAGAGTTCTCTCTGATGC	AATAG	200-210	24	3	0.375	0.362	0.46	TD 65
	R: CTGGAATTTCACACCCGTCC								
Nagr21	F: *TTGTTCTTCTATTTGGTATCCTATTGC	TTC	245-444	24	5	0.333	0.644	0.19	TD 65
	R: GAACAGAAACCTGTCCCTTGG								
Nagr22†	F: *CGACATCTTTGTTCTTCTGTAGTGG	TCTG	170-227	24	5	0.500	0.681	0.15	TD 65
	R: GAGACATGGCTTCTATCCCTGG								
Nagr23	F: *GGTTCAATGCCCTCCTCTGG	TTCC	259–283	24	4	0.458	0.609	0.22	TD 65
	R: GAGCCTGTCCCTACAGATCCC								
Nagr24	F: *CCCTCCTGAAATGTCCTCC	TCTG	237	24	1	0.000	0.000	0.10	TD 65
	R: GATATTTACTTTGGCACCCTTGG								
Nagr26	F: *CAACTTCCTATACAGATCCTCTGTTACC	ATGG	211-219	24	2	0.208	0.187	0.68	TD 65
	R: GCTCATTGTTTCTCCCATAAAGG								
Nagr27	F: *CACAGAAGACAGAGATGTTAAGTGC	TTC	207-261	23	10	0.870	0.846	0.40	TD 65
	R: GGAAACCCTTCTGCTTACTAGC								
Nagr28	F: *CCACCTGCCATGAAAGTTCC	ATGG	297	24	1	0.000	0.000	0.10	TD 65
	R: GGCTTTGGTAAGTATTGGGTGG								
Nagr29	F: *TCACCATGCTGCCTTAGACC	AAC	253-265	24	3	0.625	0.565	0.28	TD 65
	R: GGGAGCTTTGAAATCTAAAGAGG								
Nagr30	F: *AAGAAACAGGAGTTCAAATATGGG	AAGT	114–218	24	4	0.375	0.574	0.26	TD 65
	R: GGGTCCCAAAGAGTAGGGC	~ ~							
Nagr31	F: *CIGCIGTICCIGIGAGGGC	ATGG	206–214	24	2	0.375	0.353	0.48	TD 65
	R: GGTAGAGACATTTAGGGTTAGCTAGGG	4.57.0	102 202	~ ~		0.000	0 (10	0.10	
Nagr32		ATC	193–203	24	4	0.333	0.640	0.19	TD 65
			402 417	24	4	0.605	0.000	0.10	TD (5
Nagr33		AAC	402-417	24	4	0.625	0.666	0.18	ID 65
N		TOO	222.262	22	4	0.565	0.575	0.24	TTD (5
Nagr35		IGC	233-263	23	4	0.565	0.575	0.24	ID 65
Norr26		ATCT	202 222	24	4	0 5 4 2	0.522	0.22	TD 45
ivagr30		AICI	205-225	24	4	0.342	0.332	0.32	10 03
Nagr28+		TGC	271 205	24	А	0 125	0 666	0.19	TD 45
Inagi 50	R. TCCTAGGTTGCAGTCCCTGG	100	271-303	24	4	0.123	0.000	0.10	10 05

Table 1 Details for 30 microsatellite loci developed for Nanger granti

Table 1 continued

Locus	Primer Sequence $5' - > 3'$	Repeat motif	Size (bp)	N	K	H _o	H _e	PI	TD
Nagr40†	F: *AAGGGTATGTTGTGCCGC	TGC	255-276	23	4	0.261	0.598	0.23	TD 65
	R: TCTGCTGCTATTTGGATATTTAGAGG								
Nagr41	F: *CCACAAACAGTCAGGCACG	AAAG	220-244	24	4	0.833	0.727	0.12	TD 65
	R: TCTTAACTGTTACTGCCTTCATCTCC								
Nagr42	F: *TGGGAAGAGAGTGTGGATGC	ATGG	304-348	24	4	0.417	0.563	0.25	TD 65
	R: TCTTTGGTAGATGAAGAGATACATGG								
Nagr44	F: *TGCTATGTGTTTGACATTGTGC	ATGG	374–390	19	4	0.632	0.691	0.15	TD 65
	R: TGTTGAGAACTGGCTAATGACG								
Nagr45†	F: *TATGCATGCTCAAGGTTGCC	AAAC	309-313	24	2	0.000	0.330	0.5	TD 65
	R: TTCCAGGTCCTACCTCCTAAGC								
Nagr48	F: *GGATGTGACTGAAACCCTGG	ATGG	354-362	24	3	0.583	0.617	0.22	TD 65
	R: TTTCTCATGGATTGCCTCCC								

The size indicates the range of observed alleles in base pairs and includes the length of the CAG tag; number of individuals genotyped is N, k is number of alleles observed, H_o and H_e are observed and expected heterozygosity, respectively, PI is the probability of identity for each locus, and TD refers to the touchdown protocol used for PCR

* indicates CAG tag (5'-CAGTCGGGCGTCATCA-3') label

[†] indicates significant deviations from Hardy–Weinberg expectations after Bonferroni correction

disequilibrium were conducted using GENEPOP v4.0 (Rousset 2008). After Bonferroni correction, five loci showed significant deviations from HWE. No linkage disequilibrium was detected. These new loci add to eight microsatellites described previously for *N. granti* (Huebinger et al. 2006).

Acknowledgments The Kenya Ministry of Science, Education and Technology and the Kenya Wildlife Service gave permission to conduct this work in Kenya, and animal capture protocols were approved by the University of Georgia IACUC (#A2010 10-188). This work was supported by a National Science Foundation CAREER Award to VOE (IOS-1101836) and partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation.

References

Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollack DD (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE 7(2):e30953

- Huebinger RM, De Maar TW, Woodruff LH, Pomp D, Louis EE (2006) Characterization of eight microsatellite loci in Grant's gazelle (*Gazella granti*). Mol Ecol Notes 6:1150–1151
- IUCN SSC Antelope Specialist Group (2008) *Nanger granti*. The IUCN Red List of Threatened Species. Version 2014.1
- O'Bryhim J, Somers C, Lance SL, Yau M, Boreham DR, Jones KL, Taylor EB (2013) Development and characterization of twentytwo novel microsatellite markers for the mountain whitefish, *Prosopium williamsoni* and cross-amplification in the round whitefish, *P. cylindraceum*, using paired-end Illumina shotgun sequencing. Conserv Genet Resour 5:89–91
- Rousset F (2008) GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106